Shock-induced dust ignition in curved pipeline with steady flow

I. Semenova,*, S. Frolovb, V. Markovc, P. Utkina

aInstitute for Computer Aided Design, RAS, 19/18, 2nd Brestskaya Street, 123056 Moscow, Russia
bSemenov Institute of Chemical Physics, RAS, 4, Kosygina Street, 117334 Moscow, Russia
cV.A. Steklov Mathematical Institute, RAS, 8, Gubkina Street, 119991 Moscow, Russia

Received 1 December 2006; received in revised form 29 April 2007; accepted 29 April 2007

Abstract

The ultimate objective of the research outlined in this paper is to determine the conditions governing shock-induced ignition of dusty flows in curved pipes using analytical and computational approaches. The results of numerical simulation indicate that ignition of two-phase flows in curved channels is mainly conditioned by the shock-induced flow and is not very sensitive to the flow structure in front of the shock wave. The calculations of nonreactive shock propagation in the quasi-steady two-phase flow and in the uniform quiescent dust suspension revealed significant differences in the postshock flow structure downstream the channel corner. Nevertheless, ignition occurred in the region where the predominant role was played by reflected shock waves, i.e., in the vicinity to the channel corner. The results call for further studies dealing with shock-induced ignition and explosion build-up in curved channels.

r2007 Elsevier Ltd. All rights reserved.

Keywords: Dust ignition; Curved pipeline; Steady flow; Multiphase; Numerical simulation

1. Introduction

An explosion hazard of pneumatic dust conveyors is the issue of considerable concern for process industries (Bartknecht, 1987; Eckhoff, 1997). In case of accidental ignition of dust suspensions in feeders, cyclones, separators, filters, or other equipment attached to the dust conveyors, severe local explosions can occur and a danger of explosion transmission to other processing units through the conveyor manifolds exists. Physical mechanisms of explosion transmission and accident escalation include a possibility of flame propagation in the dust suspension and shock-induced ignition of a dusty flow leading to deflagration-to-detonation transition (DDT). The latter scenario is known to be most devastating.

Explosion hazards caused by flame propagation in the pneumatic dust conveyors were studied both experimentally and theoretically elsewhere (Bartknecht, 1987; Bielert & Sichel, 1997; Eckhoff, 1997; Vogl, 1996). The flame propagation velocity was shown to depend on many parameters including dust type and concentration in the flow, flow velocity, tube diameter and length, ignition location and ignition source, etc. Moreover, experiments of full-scale dust-conveying systems under realistic operating conditions were performed.

Shock-induced ignition and detonation of reactive dust suspensions were studied for simple initial configurations. Among them: (i) quiescent dust suspensions in channels of constant or variable cross-section (e.g., Korobeinikov, 1993; Kutushev & Shorohova, 2002), (ii) confined dust clouds with well-defined boundaries (e.g., Fedorov & Khmel, 2002), (iii) infinite-length, thin, dense dust layers (e.g., Kauffman, Sichel, & Wolanski, 1992; Korobeinikov et al., 2002), and (iv) finite-length, thin, dense dust layers with a definite shape of the upwind edge (e.g. Fedorov & Fedorchenko, 2005). In all cases, the two-phase flow was described by the set of governing conservation equations based on the formalism of interpenetrating continua (Nigmatulin, 1987), the applicability of which to dense dust layers still remains questionable. On the one hand, such studies revealed salient features of shock-induced ignition processes and provided useful information on characteristic time and length scales inherent in the ignition phenomenon. On the other hand, the dust cloud or dense layer formation process, which has a strong influence on

*Corresponding author. Tel.: +7 495 2508286; fax: +7 495 2509554.
E-mail address: semenov@icad.org.ru (I. Semenov).

0950-4230/S - see front matter r2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jlp.2007.04.019
the dynamics of dust explosion, is out of consideration in such studies. The ultimate objective of the research outlined in this paper is to determine the conditions governing shock-induced ignition of dusty flows in curved pipelines using analytical and computational approaches. It is implied that this study will provide information on possible similarity conditions for modeling large-scale explosions in pipelines using laboratory-scale installations.

2. Problem formulation

2.1. Flow configuration

As the starting point of the research, the flow configuration shown in Fig. 1 was considered. A gas uniformly laden with monodispersed spherical dust particles of diameter \(d \) entered at an inlet velocity \(U_{in} \) a curved planar channel of width \(H \) and total length \(L \) with the 90° corner. The lengths of the vertical and horizontal portions of the channel along its central section were \(L_1 \) and \(L_2 \), respectively, so that \(L = L_1 + L_2 \). The loading of the flow with the dust at the inlet of the channel was \(\eta \). It was expected that the steady-state (or quasi-steady-state) flow pattern in the channel could exhibit pronounced stagnation and recirculation zones with dust particles accumulation, as shown schematically in Fig. 1. A shock wave, formed presumably due to accidental explosion outside the channel, could enter the channel either from the inlet or from the outlet. Depending on the incident shock wave strength and compression phase duration, ignition of dust particles could occur either in the free stream or due to complex interaction of the shock-induced flow with confining walls and dust deposits. The issue addressed in this study was to find out whether the steady-state flow pattern in the channel was important for shock-induced ignition of particle suspension or not. In the latter case, the analysis of the explosion hazards could be greatly simplified due to avoiding the necessity of simulating the steady-state flow pattern in the channel.

2.2. Mathematical model

The mathematical statement of the problem was based on two-dimensional equations of two-phase, viscous, reactive, compressible flow within a coupled two-velocity and two-temperature formulation (Nigmatulin, 1987). The set of governing equations is given below

\[
\rho_1 = \sum_{k=1}^{NGSP} \rho_{1,k}, \quad \rho_2 = \sum_{k=1}^{NSSP} \rho_{2,k},
\]

\[
\partial_t \rho_{1,k} + \partial_j (\rho_{1,k} u_{1,j}) = - \rho_{1,k} \partial_j F_{J,k} + \partial_j q_{1,k}, \quad k = 1, \ldots, NGSP,
\]

\[
\partial_t \rho_{2,k} + \partial_j (\rho_{2,k} u_{2,j}) = \partial_j q_{2,k}, \quad k = 1, \ldots, NSSP,
\]

\[
\partial_t (\rho_{1,k} u_{1,j}) + \partial_j (\rho_{1,k} u_{1,j} u_{1,j}) + \partial_j p = -F_{J,k} - \partial_j q_{1,k} + \partial_j T_{m},
\]

\[
\partial_t (\rho_{2,k} u_{2,j}) + \partial_j (\rho_{2,k} u_{2,j} u_{2,j}) = F_{J,k} + \partial_j q_{2,k} + \partial_j T_{m},
\]

\[
\partial_t E_1 + \partial_j (E_1 + p) u_{1,j} = -F_{u_2} - Q_T - Q_R - 0.5 \partial_j u_{2,j}^2 - \sum_{k=1}^{NGSP} \partial_j q_{1,k} T_m - \partial_j q_{2,k},
\]

\[
\partial_t E_2 + \partial_j (E_2 + p) u_{2,j} = F_{T} + Q_T + Q_R + 0.5 \partial_j u_{2,j}^2 + \sum_{k=1}^{NSSP} \partial_j q_{2,k},
\]

\[
E_1 = 0.5 \rho_{1,k} u_{1,j}^2 + \sum_{k=1}^{NGSP} \rho_{1,k} c_{1,k},
\]

\[
E_2 = 0.5 \rho_{2,k} u_{2,j}^2 + \sum_{k=1}^{NSSP} \rho_{2,k} c_{2,k},
\]

\[
e_{1,k} = c_{1,k} T_1, \quad k = 1, \ldots, NGSP,
\]

\[
e_{2,k} = c_{2,k} T_2, \quad k = 1, \ldots, NSSP,
\]

\[
p = \sum_{k=1}^{NGSP} \rho_{1,k} R_{1,k} T_1,
\]

\[
h_{1,k} = e_{1,k} + R_{1,k} T_1, \quad k = 1, \ldots, NGSP,
\]

where \(t \) is time, \(m = (x, y) \), \(x \) and \(y \) are the coordinates, \(\rho \) is the density, \(p \) is the pressure, \(T \) is the temperature, \(c \) is the specific heat, \(R \) is the gas constant, \(\mathbf{u} \) is the velocity vector, \(\mathbf{J} \) is the diffusion mass flux in the gas, \(\partial \) is the rate of mass variation, \(F \) is the interphase force vector, \(\mathbf{T} \) is the stress tensor in the gas, \(q \) is the heat flux vector in the gas, \(Q_T \) and \(Q_R \) are the interphase heat fluxes due to convection and radiation, \(Q_s \) and \(Q_e \) are the chemical...
energy release by carbon and volatiles oxidation respectively. The NGSP is the number of species in the gas phase, and NSSP is the number of species in the solid phase. Indices 1 and 2 denote the gas and solid phases, respectively. The interaction between phases was modeled by the standard relationships reported elsewhere (Korobeinikov et al., 2002).

The gas phase was assumed to contain five species (NGSP = 5): CH$_4$ (k = 1), O$_2$ (2), N$_2$ (3), CO$_2$ (4), and H$_2$O (k = 5). The dispersed solid-particle phase was assumed to contain three species (NSSP = 3): volatile, CH$_4$ (k = 1); carbon, C (2), and ash (k = 3). The following chemical reactions are considered:

\[
\text{CH}_4 + 2\text{O}_2 = \text{CO}_2 + 2\text{H}_2\text{O} + Q_{\text{CH}_4} \text{ (homogeneous),}
\]

\[
\text{C} + \text{O}_2 = \text{CO}_2 + Q_{\text{C}} \text{ (heterogeneous),}
\]

where \(Q_{\text{CH}_4}\) = 47.9 kJ/g and \(Q_{\text{C}}\) = 30 kJ/g. The rates of mass variation for different species was modeled as

\[
\dot{\omega}_{1,1} = \dot{\omega}_{1,1} - \dot{\omega}_{2,1},
\]

\[
\dot{\omega}_{1,1} = -\rho_{1,2} \rho_{1,1} \sqrt{T_1} B_1 \exp \left(-\frac{E_g}{RT_1} \right),
\]

\[
E_g = 60 \text{ kJ/mol, } B_1 = 2.5 \times 10^{10} \text{ cm}^3 \text{ g}^{-1} \text{ K}^{-1/2} \text{ s}^{-1},
\]

\[
\dot{\omega}_{2,1} = -\rho_{2,1} B_1 \exp \left(-\frac{E_e}{RT_1} \right),
\]

\[
E_e = 44 \text{ kJ/mol, } B_1 = 2.5 \times 10^5 \text{ s}^{-1},
\]

\[
\dot{\omega}_{1,2} = 4\dot{\omega}_{1,1} + \frac{3}{2} \dot{\omega}_{2,2}, \quad \dot{\omega}_{1,3} = 0,
\]

\[
\dot{\omega}_{1,4} = -\frac{11}{12} \dot{\omega}_{1,1} + \frac{11}{12} \dot{\omega}_{2,2}, \quad \dot{\omega}_{1,5} = -\frac{2}{3} \dot{\omega}_{1,1},
\]

\[
\dot{\omega}_{2,1} = \dot{\omega}_{2,1},
\]

\[
\dot{\omega}_{2,2} = \dot{\omega}_{2,2} = -A_e F_e T_1 \rho_{1,2} \rho_{2,2} R_{0_e} \exp \left(-\frac{E_e}{RT_1} \right),
\]

\[
R_{0_e} = \frac{R}{\mu_{0_e}},
\]

\[
E_e = 144 \text{ kJ/mol, } A_e = 8.71 \times 10^3 \text{ cm}^2 \text{ g}^{-1} \text{ s}^{-1} \text{ bar}^{-1},
\]

\[
F_e = 4.26 \times 10^6 \text{ cm}^2 \text{ g}^{-1}.
\]

2.3. Problem parameters and test cases

Table 1 shows the values of problem parameters used in the calculations. Table 2 shows the test cases studied herein. The parameters for the coal particles composition were taken from (Wolinski & Wolanski, 1993).

The first two test cases relate to the steady-state homogeneous (case 1) and two-phase (case 2) flow pattern in the channel under consideration. In addition, four test cases with a shock wave entering the channel inlet were studied. In cases 3 and 4, the shock wave of initial Mach number 3 propagated in the quasi-steady nonreactive (case 3) and reactive (case 4) two-phase flow. In cases 5 and 6, the shock wave of initial Mach number 3 propagated in the quiescent, uniform, nonreactive (case 5) and reactive (case 6) dust suspension in air.

2.4. Numerical procedure

The numerical procedure was similar to that reported in Korobeinikov et al. (2002). It was based on the finite volume approach and Godunov flux approximation and was implemented for parallel computing. The problem was solved at fine (structured) computational grid with 600,000 cells.

3. Results of calculations

3.1. Case 1

The aim of case 1 was to determine a quasi-steady-state flow pattern in the channel simulating the operation of the

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial gas composition:</td>
<td>Air</td>
</tr>
<tr>
<td>Oxygen</td>
<td>21% (vol)</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>79% (vol)</td>
</tr>
<tr>
<td>Particle composition:</td>
<td>—</td>
</tr>
<tr>
<td>Coal</td>
<td>39.1% (wt)</td>
</tr>
<tr>
<td>Ash</td>
<td>6.4% (wt)</td>
</tr>
<tr>
<td>Methane</td>
<td>54.5% (wt)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Case number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>Steady-state homogeneous airflow</td>
</tr>
<tr>
<td>Case 2</td>
<td>Steady-state two-phase flow</td>
</tr>
<tr>
<td>Case 3</td>
<td>Shock wave propagation in quasi-steady nonreactive two-phase flow</td>
</tr>
<tr>
<td>Case 4</td>
<td>Shock wave propagation in quasi-steady reactive two-phase flow</td>
</tr>
<tr>
<td>Case 5</td>
<td>Shock wave propagation in quiescent, uniform, nonreactive dust suspension</td>
</tr>
<tr>
<td>Case 6</td>
<td>Shock wave propagation in quiescent, uniform, reactive dust suspension</td>
</tr>
</tbody>
</table>

pneumatic conveyor without particle loading. The time taken for the flow to attain a quasi-steady state pattern will be denoted as \(t_s \). The boundary conditions were taken as follows:

Inlet:

\[
u_{1,x} = 0, \quad u_{1,y} = U_{in} = 10 \text{ m/s},
\]

\[
T_1 = 293 \text{ K}, \quad \frac{\partial p}{\partial t} - (c_{in} - U_{in}) \frac{\partial p}{\partial y} = 0, \quad \rho_1 = \rho_1(p, T_1).
\]

Outlet:

\[
u_{1,x} + X \frac{\partial u_{1,x}}{\partial x} = U_{in},
\]

\[
\frac{\partial T_1}{\partial x} + \frac{\partial u_{1,x}}{\partial x} = 0, \quad \frac{\partial p}{\partial t} + (c_{in} + U_{in}) \frac{\partial p}{\partial x} = 0, \quad \rho_1 = \rho_1(p, T_1),
\]

where \(X \) is constant with dimension of length.

Rigid walls:

\[
u_{1,x} = u_{1,y} = 0, \quad \frac{\partial T_1}{\partial x} = 0, \quad \frac{\partial p}{\partial x} = 0, \quad \rho_1 = \rho_1(p, T_1),
\]

where \(n \) is normal vector to the wall surface.

Differential conditions for pressure were taken from Dorodnitsyn (2000) to ensure nonreflecting inlet and outlet boundaries required for obtaining a steady-state subsonic flow pattern in the channel.

Fig. 2 shows the calculated fields of the length of the gas velocity vector (Fig. 2a) and pressure (Fig. 2b) in the airflow upon the establishment of a quasi-steady flow pattern \((t_s \approx 400 \text{ ms}) \). The flow in the channel exhibits regular velocity and pressure oscillations caused by vortex shedding from the convex corner. The frequency of vortex shedding is about 50–70 Hz. Two distinct recirculation zones are evident in Fig. 2: one attached to the concave corner and the other behind the convex corner.

3.2. Case 2

The aim of case 2 was to determine a quasi-steady-state flow pattern in the channel simulating the operation of the pneumatic conveyor with particle loading. Case 2 is the continuation of case 1 at \(t > t_s \). At \(t = t_s \), the boundary conditions of case 1 were supplemented by the conditions for solid particles:

Inlet:

\[
u_{2,x} = 0, \quad u_{2,y} = U_{in} = 10 \text{ m/s},
\]

\[
T_2 = 293 \text{ K}, \quad \rho_2 = 2 \text{ kg/m}^3.
\]

Outlet:

\[
u_{2,x} + X \frac{\partial u_{2,x}}{\partial x} = U_{in},
\]

\[
\frac{\partial T_2}{\partial x} + \frac{\partial u_{2,x}}{\partial x} = 0, \quad \frac{\partial p_2}{\partial x} = 0,
\]

where \(n \) is normal vector to the wall surface.

Fig. 3 shows the calculated fields of the length of the gas velocity vector (Fig. 3a), pressure (Fig. 3b), length of the particle-phase velocity vector (Fig. 3c), and particle-phase mass fraction (Fig. 3d) in the two-phase flow, when a quasi-steady flow pattern was established in case 2. Particle-phase mass fraction was defined as the ratio of the particle-phase density \(\rho_2 \) to the mixture density \(\rho_1 + \rho_2 \). Particles modify considerably the velocity and pressure fields in the channel as follows from the comparison of Figs. 2(a) and (b) with Figs. 3(a) and (b). The vortex shedding frequency decreases to 20–30 Hz and the flow pattern is getting less regular. The most important outcome of Fig. 3 is the existence of pronounced stratification of phases behind the corner. Due to inertia effects, particles hit the upper wall of the channel and move predominantly along this wall for a distance as large as 20 H (see Fig. 3d). After passing a distance of about 10 H, particles start entraining into the gas flow in the form of narrow jets hitting the opposite (lower) wall of the channel. The particle entrainment is caused by energetic gas vortices shedding from the convex corner. Despite the entrainment, most of particles are accumulated at the upper wall of the channel.

The pressure traces of Fig. 4 taken along the symmetry line at different locations in the channel (P1—at the inlet, P2—at the middle of the vertical channel arm, P3—between the convex and concave corners, P4—in the middle of horizontal channel arm, and P5—at the outlet) indicate that the flow is quasi-steady indeed.

Note that the applicability of the model described in Section 2.2 in the dense near-wall region with large...
particle-phase density remains questionable and calls for fundamental substantiation (Nigmatulin, 1987). Nevertheless, as this model was shown to give satisfactory predictions for many types of industrial two-phase flows and is based on fundamental conservation laws, one could expect that its possible failure to describe the flow field in the dense near-wall regions could result in certain redistributions of local flow parameters (velocity, pressure, density, etc.) in these regions. Thus, due to relatively small dimensions of such regions, the model of Section 2.2 can be considered applicable for the comparative qualitative study reported herein.

3.3. Case 3

The aim of case 3 was to determine the response of the flow pattern of case 2 to a nonreactive shock wave of initial Mach number $M_0 = 3.0$ entering the channel through the inlet. In view of it, special attention was paid to the inlet boundary conditions. When the flow pattern in case 2 approached a quasi-steady state, the boundary conditions at the channel inlet were changed stepwise to ensure the formation of a shock wave in the flow. For this purpose, the pressure, density, gas velocity, and temperature of air at the open boundary were specified according to Rankine–Hugoniot relationships. The duration τ of the shock-induced flow at the inlet boundary was taken finite in order to simulate a shock wave with a finite compression phase. To simplify the solution, it was assumed that during time $\tau = 0.5\,\text{ms}$ only air entered the computational domain through the inlet.

Fig. 5 shows the calculated fields of the length of the gas velocity vector (Fig. 5a), pressure (Fig. 5b), the length of particle-phase velocity vector (Fig. 5c), and particles mass fraction (Fig. 5d) in the nonreactive two-phase flow at the time instant when the shock wave traversed the channel corner and traveled a distance of about 11 H downstream of it. The shock-induced gas velocity and overpressure are considerably higher than in the undisturbed two-phase flow. Nevertheless, both the 90° turn of the channel and the flow structure in front of the propagating shock waves affect the flow pattern behind the shock. Shock reflection from the upper horizontal wall results in the formation of the reflected waves propagating upstream toward the inlet and downstream toward the primary shock diffracted over the convex corner. The former shock wave reverses the flow in the channel. The shock waves propagating downstream exhibit regular reflections from the upper and lower channel walls, which induce particle entrainment from the dense layer attached to the upper channel wall into the postshock flow in the form of discrete energetic jets (see Fig. 5d).

3.4. Case 4

The aim of case 4 was to determine the response of the flow pattern to a reactive shock wave of initial Mach
number $M_0 = 3.0$ entering the channel through the inlet, and, in particular, to determine the location and conditions of shock-induced ignition in the flow. Fig. 6 shows the calculated fields of the length of the gas velocity vector (Fig. 6a), pressure (Fig. 6b), the length of the particle-phase velocity vector (Fig. 6c), particle-phase mass fraction (Fig. 6d), particle-phase mass fraction (Fig. 6e), and product mass fraction (Fig. 6f).
temperature of gas (Fig. 6e), and mass fraction of the reaction products (Fig. 6f) in the reactive two-phase flow at the time instant shortly after the shock-induced ignition. First ignition was found to occur in the corner area in the shear layers formed by interacting incident and reflected shock waves. The flow in this area has a

Fig. 7. (a) Predicted field of gas velocity (case 5), (b) predicted field of pressure (case 5), (c) predicted field of particle velocity (case 5), and (d) predicted field of particle mass fraction (case 5).

Fig. 8. (a) Predicted field of gas velocity (case 6), (b) predicted field of pressure (case 6), (c) predicted field of particle velocity (case 6), (d) predicted field of particle mass fraction (case 6), (e) predicted field of gas temperature (case 6), and (f) predicted field of product mass fraction (case 6).
very complex structure shown in the exploded views on Figs. 6(e) and (f).

3.5. Case 5

In case 5, the quasi-steady flow pattern of case 2 was replaced by the uniform quiescent suspension of solid particles. The aim of case 5 was to determine the response of the uniform dust suspension to a nonreactive shock wave of initial Mach number $M_0 = 3.0$ entering the channel through the inlet. The shock wave generation technique and parameters were the same as in case 3.

Fig. 7 shows the calculated fields of the length of the gas velocity vector (Fig. 7a), pressure (Fig. 7b), the length of the particle-phase velocity vector (Fig. 7c), and particle-phase mass fraction (Fig. 7d) in the nonreactive, initially quiescent dust suspension at the time instant when the shock wave diffracts over the convex corner and travels a distance of about 10H. There are both differences and similarities in the flow patterns of Figs. 7 and 5. In case 5, there is a uniform two-phase flow behind a diffracted shock wave, whereas in case 3, the diffracted shock wave propagates in a highly stratified two-phase flow with particles concentrated at the upper wall. Nevertheless, the diffraction of the primary shock wave in both cases results in flow stratification behind the convex corner. In case 5 (see Fig. 7d), similar to case 3 (see Fig. 5d) the particles involved in motion behind the primary shock wave get collecting near the upper wall of the channel. This effect results in the formation of a flow region behind the convex corner with a very small concentration of particles.

3.6. Case 6

The aim of case 6 was to determine the response of the uniform dust suspension to a nonreactive shock wave of initial Mach number $M_0 = 3.0$ entering the channel through the inlet and to determine the location and conditions of shock-induced ignition in the flow. Fig. 8 shows the calculated fields of the length of the gas velocity vector (Fig. 8a), pressure (Fig. 8b), the length of the particle-phase velocity vector (Fig. 8c), particle-phase mass fraction (Fig. 8d), temperature of gas (Fig. 8e), and mass fraction of the reaction products (Fig. 8f) in the reactive initially quiescent dust suspension shortly after the time instant when the shock-induced ignition occurred in the region behind the convex corner.

The ignition was found to occur in the shear layers formed by interacting incident and reflected shock waves (see the exploded views in Figs. 8e and f). It is important to note that ignition in cases 4 and 6 occurred at nearly the same time and in nearly the same flow region (near the channel corner) despite significant differences in the flow structure.

4. Discussion and conclusion

Fig. 9 shows the comparison of predicted pressure histories in cases 3 to 6 in the channel cross-section connecting the convex and concave corners. Shown in Fig. 9a are the results for nonreactive cases 3 (upper part) and 5 (lower part). Fig. 9b relates to the reactive cases 4 (upper part) and 6 (lower part). Pressure monitoring locations P3_1 to P3_7 are distributed equidistantly along the cross-section with P3_1 located at a distance of 22 mm from the concave corner. Clearly, the differences in the corresponding pressure histories are insignificant both qualitatively and quantitatively.

Thus, the results of calculations indicate that ignition of two-phase flows in curved channels is mainly conditioned by the shock-induced flow and is not very sensitive to the flow structure in front of the shock wave. The calculations
of nonreactive shock propagation in the quasi-steady two-phase flow and in the uniform quiescent dust suspension revealed significant differences in the postshock flow structure downstream the channel corner. Nevertheless, ignition occurred in the region where the predominant role was played by reflected shock waves, i.e., in the vicinity to the channel corner.

There are two important implications of the results obtained. Remind that the calculations were performed for the shock waves of rather high intensity (Mach 3). Dust ignition in weaker primary shock waves will be affected by the flow structure in the channel. Also, the calculations were focused on dust ignition rather than subsequent flame propagation and explosion build-up. The latter requires modeling of turbulence and turbulence—chemistry interaction in the two-phase flow and was beyond the scope of this study. In view of the considerable flow stratification ahead of and behind the propagating shock wave, the flow structure will exert a strong influence on the explosion dynamics in the channel.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant nos 05-08-18200 and 05-08-50115). Dr. I. Semenov also acknowledges the support of "Russian Science Support Foundation".

References

