Всероссийская конференция
“Современные проблемы механики сплошной среды”
посвященная памяти академика
Леонида Ивановича Седова
в связи со столетием со дня его рождения

Тезисы докладов

МИАН, Москва, 12–14 ноября 2007 г.
Быстрый переход горения в детонацию

С. М. Фролов

Институт химической физики им. Н. Н. Семенова РАН

smfrol@chph.ras.ru

Представлен обзор исследований явления быстрого перехода горения в детонацию (ПГД) в газовых и капельных топливно-воздушных взрывчатых смесях. Под быстрым ПГД подразумевается процесс возникновения детонации, при котором турбулентное пламя разгоняется до значительно меньшей скорости, чем скорость, требуемая для классического ПГД в прямой трубе с гладкими или шероховатыми стенками. Основная цель исследований – определить условия, при которых возможен быстрый ПГД в слабо чувствительных взрывчатых смесях при очень низких энергиях зажигания. Приведены примеры быстрого ПГД, которые проверены экспериментально и с помощью многомерных численных расчетов. Среди них – ПГД (1) на участке трубы с регулярными препятствиями специальной формы, (2) в витках труб и змеевиках и (3) в трубах с U-образными поворотами. Во всех случаях быстрый ПГД происходил благодаря образованию распределенных очагов зажигания при отражениях бегущей ударной волны (УВ), образованной ускоряющимся пламенем.

Экспериментально показано, что при использовании специальной комбинации отражающих элементов возможен быстрый ПГД в взрывчатой смеси авиационного керосина при энергии зажигания на уровне 100 мДж. Экспериментальная установка состояла из пневматической топливной форсунки, обогреваемой детонационной трубы со спиралью Щелкина, источника зажигания, датчиков давления, индукционных зондов и систем питания горючего и воздуха, которые обеспечивали постоянное соотношение между массовыми расходами компонентов смеси – жидкого керосина ТС-1 и воздуха.

Проведли две серии опытов. В первой серии к участку со спиралью Щелкина присоединяли прямую гладкую детонационную трубу диаметром 52 мм, а во второй – трубу-змеевик того же диаметра. Спираль Щелкина использовали для ускорения пламени и получения УВ, распространяющейся со скоростью 800-900 м/с.

В прямой трубе даже при энергии электрического разряда 700 Дж ПГД не происходил (рис. 1). В трубе со змеевиком устойчиво регистрировали ПГД в потоке смеси керосина ТС-1 с воз-
духом (рис. 2). Переход горения в детонацию происходил даже при энергии разряда в 5 Дж: скорость волны давления на выходе из змеевика (на расстоянии около 2 м от источника зажигания) составляла 1600–1800 м/с, то есть была на уровне скорости детонации Чермена—Жуге для углеводородно-воздушных смесяй. Образованная в змеевике детонационная волна распространялась далее с постоянной скоростью. Замена электрического разрядника на специальную форкамеру позволила снизить минимальную энергию зажигания, приводящую к ПГД, до 100 мДж. Полученные результаты открывают возможности практической работы по созданию новых систем реактивного движения на детонационном сжигании топлива — импульсных детонационных двигателей [1].

Литература