SHOCK WAVE AND DETONATION PROPAGATION THROUGH U-BEND TUBES
S.M. Frolov, V.S. Akhmetov, I.O. Shumshin, Russian Academy of Sciences, Russia

The objective of the research outlined in this paper is to provide experimental and computational data on initiation, propagation, and stability of gaseous fuel—air detonations in tubes with U-bends implying their use for design optimization of pulse detonation engines (PDEs). The experimental results with the U-bends of two curvatures indicate that, on the one hand, the U-bend of the tube promotes the shock-induced detonation initiation. On the other hand, the detonation wave propagating through the U-bend is subjected to complete decay or temporary attenuation followed by the complete recovery in the straight tube section downstream from the U-bend. Numerical simulation of the process reveals some salient features of transient phenomena in U-tubes.